Video-based descriptors for object recognition
نویسندگان
چکیده
We describe a visual recognition system operating on a hand-held device, based on a video-based feature descriptor, and characterize its invariance and discriminative properties. Feature selection and tracking are performed in real-time, and used to train a template-based classifier during a capture phase prompted by the user. During normal operation, the system scores objects in the field of view based on their ranking. Severe resource constraints have prompted a re-evaluation of existing algorithms improving their performance (accuracy and robustness) as well as computational efficiency. We motivate the design choices in the implementation with a characterization of the stability properties of local invariant detectors, and of the conditions under which a template-based descriptor is optimal. The analysis also highlights the role of time as “weak supervisor” during training, which we exploit in our implementation.
منابع مشابه
Recognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملKnowledge – Assisted Video Analysis and Object Detection
Intelligent video analysis is a problem of great importance for applications such as surveillance and automatic annotation. We present, in this paper, a hybrid, knowledge – based approach for object recognition in video sequences. Objects are modelled, in the signal level, through the visual descriptors defined by MPEG-7, the ISO standard for description of audiovisual content and in the semant...
متن کاملVideo-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کاملTechnical Report LDAHash: Improved matching with smaller descriptors
SIFT-like local feature descriptors are ubiquitously employed in such computer vision applications as content-based retrieval, video analysis, copy detection, object recognition, photo-tourism and 3D reconstruction. Feature descriptors can be designed to be invariant to certain classes of photometric and geometric transformations, in particular, affine and intensity scale transformations. Howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Image Vision Comput.
دوره 29 شماره
صفحات -
تاریخ انتشار 2011